Gujarati
Hindi
10-1.Circle and System of Circles
normal

Tangents are drawn from any point on the circle $x^2 + y^2 = R^2$ to the circle $x^2 + y^2 = r^2$. If the line joining the points of intersection of these tangents with the first circle also touch the second, then $R$ equals

A

$\sqrt{2} r$

B

$2r$

C

$\frac{{2r}}{{2 - \sqrt 3 }}$

D

$\frac{{4r}}{{3 - \sqrt 5 }}$

Solution

From point 'P' on the circle $x^{2}+y^{2}=R^{2},$ two tangents are drawn to the circle $x^{2}+y^{2}=r^{2}$

The tangents meet the first circle at points 'Q' and 'R'. Given that, QR is also a tangent to the circle $x^{2}+y^{2}=r^{2}$

$P S=P T=\sqrt{R^{2}-r^{2}}$

Similarly, $S Q=Q U=U R=T R=\sqrt{R^{2}-r^{2}}$

So, PQR is an equilateral triangle. $2 \theta=60^{\circ}$

$\theta=30^{\circ}$

$\ln \Delta P O S, \sin \theta=\frac{r}{R}$

$\sin 30^{\circ}=\frac{r}{R}$

$\frac{1}{2}=\frac{r}{R}$

$R=2 r$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.