10-1.Circle and System of Circles
hard

Two circles each of radius $5\, units$ touch each other at the point $(1,2)$. If the equation of their common tangent is $4 \mathrm{x}+3 \mathrm{y}=10$, and $\mathrm{C}_{1}(\alpha, \beta)$ and $\mathrm{C}_{2}(\gamma, \delta)$, $\mathrm{C}_{1} \neq \mathrm{C}_{2}$ are their centres, then $|(\alpha+\beta)(\gamma+\delta)|$ is equal to .... .

A

$40$

B

$39$

C

$10$

D

$4$

(JEE MAIN-2021)

Solution

Slope of line joining centres of circles $=\frac{4}{3}=\tan \theta$

$\Rightarrow \cos \theta=\frac{3}{5}, \sin \theta=\frac{4}{5}$

Now using parametric form

$\frac{x-1}{\cos \theta}=\frac{y-2}{\sin \theta}=\pm 5$

$\oplus \quad(\mathrm{x}, \mathrm{y})=(1+5 \cos \theta, 2+5 \sin \theta)$

$(\alpha, \beta)=(4,6)$

$\Theta \quad(\mathrm{x}, \mathrm{y})=(\gamma, \delta)=(1-5 \cos \theta, 2-5 \sin \theta)$

$(\gamma, \mathrm{s})=(-2,-2)$

$\Rightarrow|(\alpha+\beta)(\gamma+\delta)|=|10 x-4|=40$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.