Two circles each of radius $5\, units$ touch each other at the point $(1,2)$. If the equation of their common tangent is $4 \mathrm{x}+3 \mathrm{y}=10$, and $\mathrm{C}_{1}(\alpha, \beta)$ and $\mathrm{C}_{2}(\gamma, \delta)$, $\mathrm{C}_{1} \neq \mathrm{C}_{2}$ are their centres, then $|(\alpha+\beta)(\gamma+\delta)|$ is equal to .... .
$40$
$39$
$10$
$4$
Equation of the tangent to the circle, at the point $(1 , -1)$ whose centre is the point of intersection of the straight lines $x - y = 1$ and $2x + y= 3$ is
Let $A B$ be a chord of length $12$ of the circle $(x-2)^{2}+(y+1)^{2}=\frac{169}{4}$ If tangents drawn to the circle at points $A$ and $B$ intersect at the point $P$, then five times the distance of point $P$ from chord $AB$ is equal to$.......$
The area of the triangle formed by the tangents from the points $(h, k)$ to the circle ${x^2} + {y^2} = {a^2}$ and the line joining their points of contact is
The equation of the normal at the point $(4,-1)$ of the circle $x^2+y^2-40 x+10 y=153$ is
If the tangent at $\left( {1,7} \right)$ to the curve ${x^2} = y - 6$ touches the circle ${x^2} + {y^2} + 16x + 12y + c = 0$ then the value of $c$ is: