- Home
- Standard 11
- Mathematics
Two tangents are drawn from a point $P$ to the circle $x^{2}+y^{2}-2 x-4 y+4=0$, such that the angle between these tangents is $\tan ^{-1}\left(\frac{12}{5}\right)$, where $\tan ^{-1}\left(\frac{12}{5}\right) \in(0, \pi)$. If the centre of the circle is denoted by $C$ and these tangents touch the circle at points $A$ and $B$, then the ratio of the areas of $\Delta PAB$ and $\Delta CAB$ is :
$11:4$
$9:4$
$3:1$
$2:1$
Solution

$\tan \theta=\frac{12}{5}$
$PA =\cot \frac{\theta}{2}$
$\therefore$ area of $\Delta PAB =\frac{1}{2}( PA )^{2} \sin \theta=\frac{1}{2} \cot ^{2} \frac{\theta}{2} \sin \theta$
$=\frac{1}{2}\left(\frac{1+\cos \theta}{1-\cos \theta}\right) \sin \theta$
$=\frac{1}{2}\left(\frac{1+\frac{5}{13}}{1-\frac{5}{13}}\right)\left(\frac{12}{13}\right)=\frac{1}{2} \frac{18}{18} \times \frac{2}{13}=\frac{27}{26}$
area of $\Delta CAB =\frac{1}{2} \sin \theta=\frac{1}{2}\left(\frac{12}{13}\right)=\frac{6}{13}$
$\therefore \frac{\text { area of } \Delta PAB }{\text { area of } \Delta CAB }=\frac{9}{4}$