The $G.M.$ of the numbers $3,\,{3^2},\,{3^3},....,\,{3^n}$ is

  • A

    ${3^{\frac{2}{n}}}$

  • B

    ${3^{\frac{{n + 1}}{2}}}$

  • C

    ${3^{\frac{n}{2}}}$

  • D

    ${3^{\frac{{n - 1}}{2}}}$

Similar Questions

If $a,\;b,\;c$ are in $A.P.$, $b,\;c,\;d$ are in $G.P.$ and $c,\;d,\;e$ are in $H.P.$, then $a,\;c,\;e$ are in

If $s$ is the sum of an infinite $G.P.$, the first term $a$ then the common ratio $r$ given by

If $a,\,b,\,c$ are in $G.P.$, then

If the product of three consecutive terms of $G.P.$ is $216$  and the sum of product of pair-wise is $156$, then the numbers will be

Find the sum to indicated number of terms in each of the geometric progressions in $\left.1,-a, a^{2},-a^{3}, \ldots n \text { terms (if } a \neq-1\right)$