Gujarati
13.Statistics
easy

The $S.D.$ of a variate $x$ is $\sigma$. The $S.D.$ of the variate $\frac{{ax + b}}{c}$ where $a, b, c$ are constant, is

A

$\left( {\frac{a}{c}} \right)\,\sigma $

B

$\left| {\frac{a}{c}} \right|\,\sigma $

C

$\left( {\frac{{{a^2}}}{{{c^2}}}} \right)\,\sigma $

D

None of these

Solution

(b) Let $y = \frac{{ax + b}}{c}$ i.e., $y = \frac{a}{c}x + \frac{b}{c}$

i.e., $y = Ax + B$, where $A = \frac{a}{c}$,$B = \frac{b}{c}$

 $\bar y = A\bar x + B$

 $y – \bar y = A(x – \bar x)$ ==> ${(y – \bar y)^2} = {A^2}{(x – \bar x)^2}$

==> $\sum {(y – \bar y)^2} = {A^2}\sum {(x – \bar x)^2}$

==> $n.\sigma _y^2 = {A^2}.n\sigma _x^2$ ==> $\sigma _y^2 = {A^2}\sigma _x^2$

==> ${\sigma _y} = \,|A|{\sigma _x}$ ==> ${\sigma _y} = \,\left| {\frac{a}{c}} \right|{\sigma _x}$

Thus, new $S.D$. $ = \left| {\frac{a}{c}} \right|\,\sigma $.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.