Consider a set of $3 n$ numbers having variance $4.$ In this set, the mean of first $2 n$ numbers is $6$ and the mean of the remaining $n$ numbers is $3.$ A new set is constructed by adding $1$ into each of first $2 n$ numbers, and subtracting $1$ from each of the remaining $n$ numbers. If the variance of the new set is $k$, then $9 k$ is equal to .... .

  • [JEE MAIN 2021]
  • A

    $76$

  • B

    $68$

  • C

    $82$

  • D

    $56$

Similar Questions

If $M.D.$ is $12$, the value of $S.D.$ will be

If $x_1, x_2,.....x_n$ are $n$ observations such that $\sum\limits_{i = 1}^n {x_i^2}  = 400$ and $\sum\limits_{i = 1}^n {{x_i}}  = 100$ , then possible value of $n$ among the following is 

The $S.D.$ of $5$ scores $1, 2, 3, 4, 5$ is

The variance $\sigma^2$ of the data is $ . . . . . .$

$x_i$ $0$ $1$ $5$ $6$ $10$ $12$ $17$
$f_i$ $3$ $2$ $3$ $2$ $6$ $3$ $3$

  • [JEE MAIN 2024]

Let $\mathrm{n}$ be an odd natural number such that the variance of $1,2,3,4, \ldots, \mathrm{n}$ is $14 .$ Then $\mathrm{n}$ is equal to ..... .

  • [JEE MAIN 2021]