The $pH $ of a $0.01\,M$ solution of acetic acid having degree of dissociation $12.5\%$ is
$5.623$
$2.903$
$3.723$
$4.509$
The ionization constant of $HF$, $HCOOH$ and $HCN$ at $298\, K$ are $6.8 \times 10^{-4}, 1.8 \times 10^{-4}$ and $4.8 \times 10^{-9}$ respectively. Calculate the ionization constants of the corresponding conjugate base.
Ionic product of water at $310 \,K$ is $2.7 \times 10^{-14}$. What is the $\mathrm{pH}$ of neutral water at this temperature?
$2\, gm$ acetic acid and $3\, gm$ sodium acetate are present in $100\, ml$. aqueous solution then what will be the $pH$ of solution if ionisation constant of acetic acid is $1.8 \times 10^{-5}$
Dissociation constat of weak acid $HA$ is $1.8 \times {10^{ - 4}}$ calculate Dissociation constant of its conjugate base ${A^ - }$
What is the $pH$ of solution of $7$ $gm$ $N{H_4}OH$ per $500$ $mL$ ? ( ${K_b}$ of $N{H_4}OH 1.8 \times {10^{ - 5}}$, Molecular moles of $N{H_4}OH$ is $35\,g\,mo{l^{ - 1}}$ )