- Home
- Standard 11
- Mathematics
The $S.D$. of the first $n$ natural numbers is
$\frac{{n + 1}}{2}$
$\sqrt {\frac{{n(n + 1)}}{2}} $
$\sqrt {\frac{{{n^2} - 1}}{{12}}} $
None of these
Solution
(c) $S. D.$ of first $n$ natural numbers $ = \sqrt {\frac{1}{n}\Sigma {x^2} – {{\left( {\frac{{\Sigma x}}{n}} \right)}^2}} $,
$ = \sqrt {\frac{{n(n + 1)(2n + 1)}}{{6n}} – {{\left[ {\frac{{n(n + 1)}}{{2n}}} \right]}^2}} $
$ = \sqrt {\frac{{(n + 1)(2n + 1)}}{6} – {{\left( {\frac{{n + 1}}{2}} \right)}^2}} = \sqrt {\frac{{n + 1}}{2}\left( {\frac{{2n + 1}}{3} – \frac{{n + 1}}{2}} \right)} $
$ = \sqrt {\frac{{n + 1}}{2}\left( {\frac{{4n + 2 – 3n – 3}}{6}} \right)} $
$ = \sqrt {\frac{{{n^2} – 1}}{{12}}} $.
Similar Questions
Find the mean and variance for the data
${x_i}$ | $6$ | $10$ | $14$ | $18$ | $24$ | $28$ | $30$ |
${f_i}$ | $2$ | $4$ | $7$ | $12$ | $8$ | $4$ | $3$ |
Let $\mu$ be the mean and $\sigma$ be the standard deviation of the distribution
$X_i$ | $0$ | $1$ | $2$ | $3$ | $4$ | $5$ |
$f_i$ | $k+2$ | $2k$ | $K^{2}-1$ | $K^{2}-1$ | $K^{2}-1$ | $k-3$ |
where $\sum f_i=62$. if $[x]$ denotes the greatest integer $\leq x$, then $\left[\mu^2+\sigma^2\right]$ is equal $………$.