The $S.D$. of the first $n$ natural numbers is
$\frac{{n + 1}}{2}$
$\sqrt {\frac{{n(n + 1)}}{2}} $
$\sqrt {\frac{{{n^2} - 1}}{{12}}} $
None of these
If the variance of observations ${x_1},\,{x_2},\,......{x_n}$ is ${\sigma ^2}$, then the variance of $a{x_1},\,a{x_2}.......,\,a{x_n}$, $\alpha \ne 0$ is
Mean and standard deviation of 100 items are 50 and $4,$ respectively. Then find the sum of all the item and the sum of the squares of the items.
For $(2n+1)$ observations ${x_1},\, - {x_1}$, ${x_2},\, - {x_2},\,.....{x_n},\, - {x_n}$ and $0$ where $x$’s are all distinct. Let $S.D.$ and $M.D.$ denote the standard deviation and median respectively. Then which of the following is always true
If for a distribution $\Sigma(x-5)=3, \Sigma(x-5)^{2}=43$ and the total number of item is $18,$ find the mean and standard deviation.
Let $X=\{11,12,13, \ldots ., 40,41\}$ and $Y=\{61,62$, $63, \ldots ., 90,91\}$ be the two sets of observations. If $\bar{x}$ and $\bar{y}$ are their respective means and $\sigma^2$ is the variance of all the observations in $X \cup Y$, then $\left|\overline{ x }+\overline{ y }-\sigma^2\right|$ is equal to $.................$.