प्रथम $n$ प्राकृत संख्याओं का मानक विचलन $(S.D.)$ है
$\frac{{n + 1}}{2}$
$\sqrt {\frac{{n(n + 1)}}{2}} $
$\sqrt {\frac{{{n^2} - 1}}{{12}}} $
इनमें से कोई नहीं
निम्नलिखित बारंबारता बंटन के लिए माध्य व प्रसरण ज्ञात कीजिए।
वर्ग | $0-30$ | $30-60$ | $60-90$ | $90-120$ | $120-150$ | $50-180$ | $180-210$ |
बारंबारता | $2$ | $3$ | $5$ | $10$ | $3$ | $5$ | $2$ |
आठ प्रेक्षणों का माध्य तथा प्रसरण क्रमश : $9$ और $9.25$ हैं। यदि इनमें से छ: प्रेक्षण $6,7,10 , 12, 12$ और $13$ हैं, तो शेष दो प्रेक्षण ज्ञात कीजिए।
$15$ पदों का मानक विचलन $6$ है। यदि प्रत्येक पद से $1$ घटा दिया जाये, तब मानक विचलन होगा
$\alpha$, $\beta$ तथा $\gamma$ का प्रसरण $9$ है, तब $5$$\alpha$, $5$$\beta$, तथा $5$$\gamma$ का प्रसरण है
यदि $\sum_{i=1}^{9}\left(x_{i}-5\right)=9$ तथा $\sum_{i=1}^{9}\left(x_{i}-5\right)^{2}=45$ है, तो नौ प्रेक्षणों $x_{1}, x_{2}, \ldots . ., x_{9}$ का मानक विचलन है