The $x-t$ graph of a particle moving along a straight line is shown in figure The distance-time graph of the particle is correctly shown by
A point $P$ moves in counter clock wise direction on a circular path as shown in figure. The movement of $'P'$ is such that it sweeps out a length $S = t^3 + 5$, where $'S'$ is in meter and $t$ is in seconds. The radius of the path is $20\, m$. The acceleration of $'P'$ when $t = 2\, sec$. is nearly ......... $m/s^2$
A stone is tied to a string of length $L$ is whirled in a vertical circle with the other end of the string at the centre. At a certain instant of time, the stone is at its lowest position and has a speed $u.$ The magnitude of the change in its velocity as it reaches a position where the string is horizontal is
The vector sum of two forces is perpendicular to their vector differences. In that case, the forces
ball is thrown from a point with a speed $‘v_0$’ at an elevation angle of $\theta $ . From the same point and at the same instant, a person starts running with a constant speed $\frac{{'{v_0}'}}{2}$ to catch the ball. Will the person be able to catch the ball? If yes, what should be the angle of projection $\theta $ ?
A particle is projected with a velocity $v$ such that its range on the horizontal plane is twice the greatest height attained by it. The range of the projectile is (where $g$ is acceleration due to gravity)