If the instantaneous velocity of a particle projected as shown in figure is given by $v =a \hat{ i }+(b-c t) \hat{ j }$, where $a, b$, and $c$ are positive constants, the range on the horizontal plane will be

814-1364

  • A

    $2 a b / c$

  • B

    $a b / c$

  • C

    $a c / b$

  • D

    $a / 2 b c$

Similar Questions

A particle has initial velocity $(3\hat i + 4\hat j$$ ) $ and has acceleration $(0.4\,\hat i + 0.3\,\hat j)$ . Its speed after $10\,s$ is

A ball is projected with velocity $V_0$ at an angle of elevation $30^o $ . Mark the correct statement

For a particle in uniform circular motion, the acceleration $\overrightarrow{ a }$ at any point $P ( R , \theta)$ on the circular path of radius $R$ is (when $\theta$ is measured from the positive $x\,-$axis and $v$ is uniform speed)

A particle of mass $m$ is projected with a velocity $V$ making an angle of $45^o$ with the horizontal. The magnitude of the angular momentum of the projectile about the point of projection when the particle is at its maximum height $h$ is

A particle does uniform circular motion in a horizontal plane. The radius of the circle is $20$ cm. The centripetal force acting on the particle is $10\, N$. It's kinetic energy is ........ $J$