- Home
- Standard 11
- Physics
11.Thermodynamics
medium
The above $P-V$ diagram represents the thermodynamic cycle of an engine, operating with an ideal monatomic gas. The amount of heat, extracted from the source in a single cycle is

A
$4P_0V_0$
B
$P_0V_0$
C
$\left( {\frac{{13}}{2}} \right)$ $ P_0V_0$
D
$\;\left( {\frac{{11}}{2}} \right)$ $ P_0V_0$
(JEE MAIN-2013)
Solution
$Heat\,given\,to\,system = {\left( {n{C_V}\Delta T} \right)_{A \to B}} + {\left( {n{C_P}\Delta T} \right)_{B \to C}}$
$ = {\left[ {\frac{3}{2}\left( {nR\Delta T} \right)} \right]_{A \to B}} + {\left[ {\frac{5}{2}\left( {nR\Delta T} \right)} \right]_{B \to C}}$
$ = {\left[ {\frac{3}{2} \times {V_0}\Delta P} \right]_{A \to B}} + \left[ {\frac{5}{2} \times 2{P_0} \times {V_0}} \right]$
$ = \frac{{13}}{2}{P_0}{V_0}$
Standard 11
Physics
Similar Questions
normal
medium