The absolute difference of the coefficients of $x^{10}$ and $x^7$ in the expansion of $\left(2 x^2+\frac{1}{2 x}\right)^{11}$ is equal to
$12^3-12$
$11^3-11$
$10^3-10$
$13^3-13$
Let $K$ be the coefficient of $x^4$ in the expansion of $( 1 + x + ax^2) ^{10}$ . What is the value of $'a'$ that minimizes $K$ ?
The middle term in the expansion of ${\left( {x + \frac{1}{x}} \right)^{10}}$ is
The smallest natural number $n,$ such that the coefficient of $x$ in the expansion of ${\left( {{x^2}\, + \,\frac{1}{{{x^3}}}} \right)^n}$ is $^n{C_{23}}$ is
Let $\alpha$ be the constant term in the binomial expansion of $\left(\sqrt{ x }-\frac{6}{ x ^{\frac{3}{2}}}\right)^{ n }, n \leq 15$. If the sum of the coefficients of the remaining terms in the expansion is $649$ and the coefficient of $x^{-n}$ is $\lambda \alpha$, then $\lambda$ is equal to $..........$.
If for positive integers $r > 1,n > 2$ the coefficient of the ${(3r)^{th}}$ and ${(r + 2)^{th}}$ powers of $x$ in the expansion of ${(1 + x)^{2n}}$ are equal, then