If the term independent of $x$ in the exapansion of $\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{9}$ is $k,$ then $18 k$ is equal to

  • [JEE MAIN 2020]
  • A

    $9$

  • B

    $11$

  • C

    $5$

  • D

    $7$

Similar Questions

In the expansion of $(1 + x)^{43}$ if the co-efficients of the $(2r + 1)^{th}$ and the $(r + 2)^{th}$ terms are equal, the value of $r$ is :

In the binomial expansion of ${\left( {a - b} \right)^n},n \ge 5,\;$ the sum of $5^{th}$ and $6^{th}$ terms is zero , then $a/b$ equals.

  • [AIEEE 2007]

In the expansion of ${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$, the coefficient of ${x^4}$is

  • [IIT 1983]

The term independent of $x$ in the expansion of ${\left( {{x^2} - \frac{1}{x}} \right)^9}$ is

If $n$ is the degree of the polynomial,

${\left[ {\frac{1}{{\sqrt {5{x^3} + 1}  - \sqrt {5{x^3} - 1} }}} \right]^8} $$+ {\left[ {\frac{1}{{\sqrt {5{x^3} + 1}  + \sqrt {5{x^3} - 1} }}} \right]^8}$ and $m$ is the coefficient of $x^{12}$ in it, then the ordered pair $(n, m)$ is equal to

  • [JEE MAIN 2018]