The coefficient of $x^{4}$ is the expansion of $\left(1+\mathrm{x}+\mathrm{x}^{2}\right)^{10}$ is
$615$
$625$
$595$
$575$
If some three consecutive in the binomial expansion of ${\left( {x + 1} \right)^n}$ in powers of $x$ are in the ratio $2 : 15 : 70$, then the average of these three coefficient is
If for some positive integer $n,$ the coefficients of three consecutive terms in the binomial expansion of $(1+x)^{n+5}$ are in the ratio $5: 10: 14,$ then the largest coefficient in this expansion is
In the expansion of $(1 + x + y + z)^4$ the ratio of coefficient of $x^2y, xy^2z, xyz$ are
The term independent of $x$ in the expansion of ${\left( {2x - \frac{3}{x}} \right)^6}$ is
If in the expansion of ${(1 + x)^{21}}$, the coefficients of ${x^r}$ and ${x^{r + 1}}$ be equal, then $r$ is equal to