- Home
- Standard 11
- Physics
11.Thermodynamics
hard
The adiabatic Bulk modulus of a diatomic gas at atmospheric pressure is
A
$0 \,\,Nm^{-2}$
B
$1\,\, Nm^{-2}$
C
$1.4 \times 10^4 \,\,Nm^{-2}$
D
$1.4\,\, \times 10^5 \,\,Nm^{-2}$
Solution
We have the bulk modulus formula as$:$
Bulk Modulus $=\frac{\text { Pressure }}{\text { Strain }}=\frac{p}{\left(V_{0}-V_{n}\right) / V_{0}}$
For an adiabatic process, the bulk modulus is given by
$k=-\frac{V \Delta p}{\Delta V}=\gamma p$
adiabatic bulk modulus $=\gamma p$
At NTP, $p=1.013 \times 10^{5} N / m^{2}$ and $\gamma=1.4$
Hence Bulk modulus $=1.013 \times 10^{5} \times 1.4 \approx 1.4 \times 10^{5} N / m^{2}$
Standard 11
Physics
Similar Questions
easy
Match List $I$ with List $II$ :
List $I$ | List $II$ |
$A$ Isothermal Process | $I$ Work done by the gas decreases internal energy |
$B$ Adiabatic Process | $II$ No change in internal energy |
$C$ Isochoric Process | $III$ The heat absorbed goes partly to increase internal energy and partly to do work |
$D$ Isobaric Process | $IV$ No work is done on or by the gas |
Choose the correct answer from the options given below :
medium