The amount of heat energy $Q$, used to heat up a substance depends on its mass $m$, its specific heat capacity $(s)$ and the change in temperature $\Delta T$ of the substance. Using dimensional method, find the expression for $s$ is (Given that $\left.[s]=\left[ L ^2 T ^{-2} K ^{-1}\right]\right)$ is

  • A

    $Q m \Delta T$

  • B

    $\frac{Q}{m \Delta T}$

  • C

    $\frac{Q m}{\Delta T}$

  • D

    $\frac{m}{Q \Delta T}$

Similar Questions

A liquid drop placed on a horizontal plane has a near spherical shape (slightly flattened due to gravity). Let $R$ be the radius of its largest horizontal section. A small disturbance causes the drop to vibrate with frequency $v$ about its equilibrium shape. By dimensional analysis, the ratio $\frac{v}{\sqrt{\sigma / \rho R^3}}$ can be (Here, $\sigma$ is surface tension, $\rho$ is density, $g$ is acceleration due to gravity and $k$ is an arbitrary dimensionless constant)

  • [KVPY 2012]

Match the following two coloumns

  Column $-I$   Column $-II$
$(A)$ Electrical resistance $(p)$ $M{L^3}{T^{ - 3}}{A^{ - 2}}$
$(B)$ Electrical potential $(q)$ $M{L^2}{T^{ - 3}}{A^{ - 2}}$
$(C)$ Specific resistance $(r)$ $M{L^2}{T^{ - 3}}{A^{ - 1}}$
$(D)$ Specific conductance $(s)$ None of these

The quantity $X = \frac{{{\varepsilon _0}LV}}{t}$: ${\varepsilon _0}$ is the permittivity of free space, $L$ is length, $V$ is potential difference and $t$ is time. The dimensions of $X$ are same as that of

  • [IIT 2001]

In Vander Waals equation $\left[ P +\frac{ a }{ V ^{2}}\right][ V - b ]= RT$; $P$ is pressure, $V$ is volume, $R$ is universal gas constant and $T$ is temperature. The ratio of constants $\frac{a}{b}$ is dimensionally equal to .................

  • [JEE MAIN 2022]

The displacement of a progressive wave is represented by $y = A\,sin \,(\omega t - kx)$ where $x$ is distance and t is time. Write the dimensional formula of  $(i)$ $\omega $ and $(ii)$ $k$.