The angle between $(\overrightarrow A - \overrightarrow B )$ and $(\overrightarrow A \times \overrightarrow B )$ is $(\overrightarrow{ A } \neq \overrightarrow{ B })$

  • [NEET 2017]
  • A

    $120$

  • B

    $45$

  • C

    $90$

  • D

    $60$

Similar Questions

Consider a vector $\overrightarrow F = 4\hat i - 3\hat j.$ Another vector that is perpendicular to $\overrightarrow F $ is

The value of $(\overrightarrow A + \overrightarrow B )\, \times (\overrightarrow A - \overrightarrow B )$ is

$\vec A$ and $\vec B$ are two vectors and $\theta$ is the angle between them, if $|\vec A \times \vec B|=\sqrt 3(\vec A \cdot \vec B) $ the value of $\theta$ is ......... $^o$

  • [AIPMT 2007]

The two vectors have magnitudes $3$ and $5$. If angle between them is $60^o$, then the dot product of two vectors will be

The values of $x$ and $y$ for which vectors $\vec A = \left( {6\hat i + x\hat j - 2\hat k} \right)$ and $\vec B = \left( {5\hat i - 6\hat j - y\hat k} \right)$ may be parallel are