The area of the parallelogram represented by the vectors $\overrightarrow A = 2\hat i + 3\hat j$ and $\overrightarrow B = \hat i + 4\hat j$ is.......$units$

  • A

    $14$

  • B

    $7.5$ 

  • C

    $10$ 

  • D

    $5$

Similar Questions

If $\overrightarrow{ F }=2 \hat{ i }+\hat{ j }-\hat{ k }$ and $\overrightarrow{ r }=3 \hat{ i }+2 \hat{ j }-2 \hat{ k }$, then the scalar and vector products of $\overrightarrow{ F }$ and $\overrightarrow{ r }$ have the magnitudes respectively as

  • [NEET 2022]

If $A =a_1 \hat{ i }+b_1 \hat{ j }$ and $B =a_2 \hat{ i }+b_2 \hat{ j }$, the condition that they are perpendicular to each other is

Why the product of two vectors is not commutative ?

Let $\left| {{{\vec A}_1}} \right| = 3,\,\left| {\vec A_2} \right| = 5$, and $\left| {{{\vec A}_1} + {{\vec A}_2}} \right| = 5$. The value of $\left( {2{{\vec A}_1} + 3{{\vec A}_2}} \right)\cdot \left( {3{{\vec A}_1} - 2{{\vec A}_2}} \right)$ is

  • [JEE MAIN 2019]

The component of a vector along any other direction is