9.Straight Line
hard

The area of the parallelogram formed by the lines $y = mx,\,y = mx + 1,\,y = nx$ and $y = nx + 1$ equals

A

$\frac{{|m + n|}}{{{{(m - n)}^2}}}$

B

$\frac{2}{{|m + n|}}$

C

$\frac{1}{{|m + n|}}$

D

$\frac{1}{{|m - n|}}$

(IIT-2001)

Solution

(d) Solving $y = nx$ and $y = mx + 1,$ we get $P = \left( {\frac{1}{{n – m}},\,\frac{n}{{n – m}}} \right)$
$\therefore $ Area of parallelogram $= 2 ×$ (area of $\Delta $ $POQ$)
$ = 2 \times \left| {\frac{1}{2} \times OQ \times \frac{1}{{n – m}}} \right|$ $ = \frac{1}{{|n – m|}} = \frac{1}{{|m – n|}}.$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.