- Home
- Standard 11
- Mathematics
9.Straight Line
hard
The area of the parallelogram formed by the lines $y = mx,\,y = mx + 1,\,y = nx$ and $y = nx + 1$ equals
A
$\frac{{|m + n|}}{{{{(m - n)}^2}}}$
B
$\frac{2}{{|m + n|}}$
C
$\frac{1}{{|m + n|}}$
D
$\frac{1}{{|m - n|}}$
(IIT-2001)
Solution

(d) Solving $y = nx$ and $y = mx + 1,$ we get $P = \left( {\frac{1}{{n – m}},\,\frac{n}{{n – m}}} \right)$
$\therefore $ Area of parallelogram $= 2 ×$ (area of $\Delta $ $POQ$)
$ = 2 \times \left| {\frac{1}{2} \times OQ \times \frac{1}{{n – m}}} \right|$ $ = \frac{1}{{|n – m|}} = \frac{1}{{|m – n|}}.$
Standard 11
Mathematics
Similar Questions
normal
normal