रेखाओं $y = mx,\,y = mx + 1,\,y = nx$ तथा $y = nx + 1$ से बनने वाले समान्तर चतुर्भुज का क्षेत्रफल है
$\frac{{|m + n|}}{{{{(m - n)}^2}}}$
$\frac{2}{{|m + n|}}$
$\frac{1}{{|m + n|}}$
$\frac{1}{{|m - n|}}$
यदि एक समचतुर्भुज की दो भुजाएँ, रेखाओं $x-y+1=0$ तथा $7 x-y-5=0$ की दिशा में हैं तथा इसके विकर्ण बिंदु $(-1,-2)$ पर प्रतिच्छेद करते हैं, तो इस समचतुर्भुज का निम्न में से कौन-सा शीर्ष है?
दूरी सूत्र का प्रयोग किए बिना दिखलाइए कि बिंदु $(-2,-1),(4,0),(3,3)$ और $(-3,2)$ एक समांतर चतुर्भुज के शीर्ष हैं।
वर्ग का एक विकर्ण $8x - 15y = 0$ के अनुदिश है एवं इसका एक शीर्ष $(1, 2)$ है, तो इस शीर्ष से गुजरने वाली वर्ग की भुजाओं के समीकरण हैं
यदि रेखा $3 x +4 y -24=0, x$-अक्ष को बिन्दु $A$ तथा $y$-अक्ष को बिन्दु $B$ पर काटती है, तो त्रिभुज $OAB$, जहाँ $O$ मूलबिन्दु है, का अन्तः केन्द्र है
किसी त्रिभुज की भुजाएँ $x - 3y = 0$, $4x + 3y = 5$ व $3x + y = 0$ हैं, तो रेखा $3x - 4y = 0$ गुजरती है