The area of the plates of a parallel plate capacitor is $A$ and the gap between them is $d$. The gap is filled with a non-homogeneous dielectric whose dielectric constant varies with the distance $‘y’$ from one plate as : $K = \lambda \ sec(\pi y/2d)$, where $\lambda $ is a dimensionless constant. The capacitance of this capacitor is

  • A

    $\pi \varepsilon_0\lambda A / 2d$

  • B

    $\pi \varepsilon_0\lambda A /d$

  • C

    $2\pi \varepsilon_0\lambda A /d$

  • D

    none

Similar Questions

A capacitor when filled with a dielectric $K = 3$ has charge ${Q_0}$, voltage ${V_0}$ and field ${E_0}$. If the dielectric is replaced with another one having $K = 9$ the new values of charge, voltage and field will be respectively

A parallel plate capacitor is to be designed with a voltage rating $1\; k\,V ,$ using a material of dielectric constant $3$ and dielectric strength about $10^{7}\; V\,m ^{-1} .$ (Dielectric strength is the maximum electric field a material can tolerate without breakdown, i.e., without starting to conduct electricity through partial ionisation.) For safety, we should like the field never to exceed, say $10 \%$ of the dielectric strength. What minimum area (in $cm^2$) of the plates is required to have a capacitance of $50\; pF ?$

The distance between the plates of a parallel plate condenser is $8\,mm$ and $P.D.$ $120\;volts$. If a $6\,mm$ thick slab of dielectric constant $6$ is introduced between its plates, then

A parallel plate air capacitor has a capacitance of $100\,\mu  F$. The plates are at a distance $d$ apart. If a slab of thickness $t(t \le d)$and dielectric constant $5$ is introduced between the parallel plates, then the capacitance will be.......$\mu F$

What are called polar molecules and non-polar molecules ? Both are Give examples.