Gujarati
Hindi
2. Electric Potential and Capacitance
normal

The area of the plates of a parallel plate capacitor is $A$ and the gap between them is $d$. The gap is filled with a non-homogeneous dielectric whose dielectric constant varies with the distance $‘y’$ from one plate as : $K = \lambda \ sec(\pi y/2d)$, where $\lambda $ is a dimensionless constant. The capacitance of this capacitor is

A

$\pi \varepsilon_0\lambda A / 2d$

B

$\pi \varepsilon_0\lambda A /d$

C

$2\pi \varepsilon_0\lambda A /d$

D

none

Solution

$E=\frac{\sigma}{K \epsilon_{o}}$

$\frac{d v}{d y}=\frac{\sigma}{K \epsilon_{o}}$

$\int_{0}^{v} d v=\frac{\sigma}{\lambda \epsilon_{o}} \int_{0}^{d} \cos \left(\frac{\pi y}{2 d}\right) d y V$

$=\frac{\sigma}{\lambda \epsilon_{o}} \times \frac{2 d}{\pi}\left[\sin \frac{\pi y}{2 d}\right]_{0}^{d}$

$=\frac{\sigma}{\lambda \epsilon_{o}} \times \frac{2 d}{\pi}$

$C=\frac{Q}{V}=\frac{A \lambda \epsilon_{o} \pi}{2 d}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.