The asymptote of the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}}= 1$ form with any tangent to the hyperbola a triangle whose area is $a^2$ $\tan$ $ \lambda $ in magnitude then its eccentricity is :

  • A

    $\sec \lambda$

  • B

    $ cosec\lambda$

  • C

    $\sec^2\lambda$

  • D

    $cosec^2\lambda$

Similar Questions

The eccentricity of the hyperbola $2{x^2} - {y^2} = 6$ is

If $e$ and $e’$ are the eccentricities of the ellipse $5{x^2} + 9{y^2} = 45$ and the hyperbola $5{x^2} - 4{y^2} = 45$ respectively, then $ee' = $

A hyperbola passes through the points $(3, 2)$ and $(-17, 12)$ and has its centre at origin and transverse axis is along $x$ - axis. The length of its transverse axis is

Let the tangent drawn to the parabola $y ^{2}=24 x$ at the point $(\alpha, \beta)$ is perpendicular to the line $2 x$ $+2 y=5$. Then the normal to the hyperbola $\frac{x^{2}}{\alpha^{2}}-\frac{y^{2}}{\beta^{2}}=1$ at the point $(\alpha+4, \beta+4)$ does $NOT$ pass through the point.

  • [JEE MAIN 2022]

The locus of a point $P (h, k)$ such that the line $y = hx + k$ is tangent to $4x^2 - 3y^2 = 1$ , is a/an