- Home
- Standard 11
- Physics
13.Oscillations
hard
The bob of a pendulum was released from a horizontal position. The length of the pendulum is $10 \mathrm{~m}$. If it dissipates $10 \%$ of its initial energy against air resistance, the speed with which the bob arrives at the lowest point is : [Use, $\mathrm{g}: 10 \mathrm{~ms}^{-2}$ ]
A
$6 \sqrt{5} \mathrm{~ms}^{-1}$
B
$5 \sqrt{6} \mathrm{~ms}^{-1}$
C
$5 \sqrt{5} \mathrm{~ms}^{-1}$
D
$2 \sqrt{5} \mathrm{~ms}^{-1}$
(JEE MAIN-2024)
Solution

$ \ell=10 \mathrm{~m} $
$ \text { Initial energy }=\mathrm{mg} \ell $
$ \text { So, } \frac{9}{10} \mathrm{mg} \ell=\frac{1}{2} \mathrm{mv}^2 $
$ \Rightarrow \frac{9}{10} \times 10 \times 10=\frac{1}{2} \mathrm{v}^2 $
$ \mathrm{v}^2=180 $
$ \mathrm{v}=\sqrt{180}=6 \sqrt{5} \mathrm{~m} / \mathrm{s}$
Standard 11
Physics
Similar Questions
medium