13.Oscillations
hard

સાદુ લોલક $2 \,sec$ ના આવર્તકાળથી દોલનો કરે છે,સમતોલન સ્થાન પાસે દોરીમાં તણાવ કેટલો થાય?

A

$ m\,(g + \pi \sqrt {2g\,h} ) $

B

$ m\,(g + \sqrt {{\pi ^2}g\,h} ) $

C

$ m\,\left( {g + \sqrt {\frac{{{\pi ^2}}}{2}g\,h} } \right) $

D

$ m\,\left( {g + \sqrt {\frac{{{\pi ^2}}}{3}g\,h} } \right) $

Solution

(a) Tension in the string when bob passes through lowest point

$T = mg + \frac{{m{v^2}}}{r} = mg + mv\omega $ ( $v = r\omega$)

putting $v = \sqrt {2gh} $ and $\omega= \frac{{2\pi }}{T} = \frac{{2\pi }}{2} = \pi $

we get $T = m\;(g + \pi \sqrt {2gh} )$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.