The change in the value of $‘g’$ at a height $‘h’$ above the surface of the earth is the same as at a depth $‘d’$ below the surface of earth. When both $‘d’$ and $‘h’$ are much smaller than the radius of earth, then which one of the following is correct?
$d = \frac{{3h}}{2}$
$d = \frac{h}{2}$
$d = h$
$d =2\, h$
Figure shows the variation of the gravitatioal acceleration $a_g$ of four planets with the radial distance $r$ from the centre ofthe planet for $r \ge $ radius of the planet. Plots $1$ and $2$ coincide for $r \ge {R_2}$ and plots $3$ and $4$ coincide for $r \ge {R_4}$ . The sequence of the planets in the descending order of their densities is
At what altitude will the acceleration due to gravity be $25\% $ of that at the earth’s surface (given radius of earth is $R$) ?
The orbit of geostationary satellite is circular, the time period of satellite depends on $(i)$ mass of the satellite $(ii)$ mass of the earth $(iii)$ radius of the orbit $(iv)$ height of the satellite from the surface of the earth
Figure shows the variation of the gravitatioal acceleration $a_g$ of four planets with the radial distance $r$ from the centre of the planet for $r\geq $ radius of the planet. Plots $1$ and $2$ coincide for $r\geq R_2$ and plots $3$ and $4$ coincide for $r \geq R_4$. The sequence of the planets in the descending order of their densities is
A clock $S$ is based on oscillation of a spring and a clock $P$ is based on pendulum motion. Both clocks run at the same rate on earth. On a planet having the same density as earth but twice the radius