The characteristic distance at which quantum gravitational effects are significant, the Planck length, can be determined from a suitable combination of the fundamental physical constants $G, h$ and $c$ . Which of the following correctly gives the Planck length?

  • [JEE MAIN 2018]
  • A

    $G^2hc$

  • B

    ${\left( {\frac{{Gh}}{{{c^3}}}} \right)^{\frac{1}{2}}}$

  • C

    ${G^{\frac{1}{2}}}{h^2}c$

  • D

    $Gh^2c^3$

Similar Questions

What is the dimensional formula of $a b^{-1}$ in the equation $\left(\mathrm{P}+\frac{\mathrm{a}}{\mathrm{V}^2}\right)(\mathrm{V}-\mathrm{b})=\mathrm{RT}$, where letters have their usual meaning.

  • [JEE MAIN 2024]

$A, B, C$ and $D$ are four different physical quantities having different dimensions. None of them is dimensionless. But we know that the equation $AD = C\, ln\, (BD)$ holds true. Then which of the combination is not a meaningful quantity ?

  • [JEE MAIN 2016]

The dimension of stopping potential $\mathrm{V}_{0}$ in photoelectric effect in units of Planck's constant $h$, speed of light $c$, Gravitational constant $G$ and ampere $A$ is

  • [JEE MAIN 2020]

A force defined by $F=\alpha t^2+\beta t$ acts on a particle at a given time $t$. The factor which is dimensionless, if $\alpha$ and $\beta$ are constants, is:

  • [NEET 2024]

The volume of a liquid flowing out per second of a pipe of length $l$ and radius $r$ is written by a student as $V\, = \,\frac{{\pi p{r^4}}}{{8\eta l}}$ where $p$ is the pressure difference between the two ends of the pipe and $\eta $ is coefficent of viscosity of the liquid having dimensional formula $[M^1L^{-1}T^{-1}] $. Check whether the equation is dimensionally correct.