Stokes' law states that the viscous drag force $F$ experienced by a sphere of radius $a$, moving with a speed $v$ through a fluid with coefficient of viscosity $\eta$, is given by $F=6 \pi \eta a v$.If this fluid is flowing through a cylindrical pipe of radius $r$, length $l$ and a pressure difference of $p$ across its two ends, then the volume of water $V$ which flows through the pipe in time $t$ can be written as

$\frac{v}{t}=k\left(\frac{p}{l}\right)^a \eta^b r^c$

where, $k$ is a dimensionless constant. Correct value of $a, b$ and $c$ are

  • [KVPY 2015]
  • A

    $a=1, b=-1, c=4$

  • B

    $a=-1, b=1, c=4$

  • C

    $a=2, b=-1, c=3$

  • D

    $a=1, b=-2, c=-4$

Similar Questions

The position of a particle at time $t$ is given by the relation $x(t) = \left( {\frac{{{v_0}}}{\alpha }} \right)\,\,(1 - {e^{ - \alpha t}})$, where ${v_0}$ is a constant and $\alpha > 0$. The dimensions of ${v_0}$ and $\alpha $ are respectively

If $R$ and $L$ represent respectively resistance and self inductance, which of the following combinations has the dimensions of frequency

The equation of state of some gases can be expressed as $\left( {P + \frac{a}{{{V^2}}}} \right)\,(V - b) = RT$. Here $P$ is the pressure, $V$ is the volume, $T$ is the absolute temperature and $a,\,b,\,R$ are constants. The dimensions of $'a'$ are

If electronic charge $e$, electron mass $m$, speed of light in vacuum $c$ and Planck 's constant $h$ are taken as fundamental quantities, the permeability of vacuum $\mu _0$ can be expressed in units of

  • [JEE MAIN 2015]

The electrical resistance $R$ of a conductor of length $l$ and area of cross section $a$ is given by $R = \frac{{\rho l}}{a}$ where $\rho$ is the electrical resistivity. What is the dimensional formula for electrical conductivity $\sigma $ which is reciprocal of resistivity?

  • [AIEEE 2012]