If $x$ and $a$ stand for distance then for what value of $n$ is given equation dimensionally correct the eq. is $\int {\frac{{dx}}{{\sqrt {{a^2}\, - \,{x^n}} \,}}\, = \,{{\sin }^{ - 1}}\,\frac{x}{a}} $
$0$
$2$
$-\,2$
$1$
A dimensionally consistent relation for the volume V of a liquid of coefficient of viscosity ' $\eta$ ' flowing per second, through a tube of radius $r$ and length / and having a pressure difference $P$ across its ends, is
The dimension of the ratio of magnetic flux and the resistance is equal to that of :
A dimensionally consistent relation for the volume $V$ of a liquid of coefficient of viscosity $\eta $ flowing per second through a tube of radius $r$ and length $l$ and having a pressure difference $p$ across its end, is
If orbital velocity of planet is given by $v = {G^a}{M^b}{R^c}$, then