The charge given to a hollow sphere of radius $10\, cm$ is $3.2×10^{-19}\, coulomb$. At a distance of $4\, cm$ from its centre, the electric potential will be
$28.8 \times {10^{ - 9}}\,volts$
$288\,volts$
$2.88\, volts$
$Zero$
A thin spherical insulating shell of radius $R$ carries a uniformly distributed charge such that the potential at its surface is $V _0$. A hole with a small area $\alpha 4 \pi R ^2(\alpha<<1)$ is made on the shell without affecting the rest of the shell. Which one of the following statements is correct?
Charge is uniformly distributed on the surface of a hollow hemisphere. Let $O$ and $A$ be two points on the base of the hemisphere and $V_0$ and $V_A$ be the electric potentials at $O$ and $A$ respectively. Then,
Four charges $2C, -3C, -4C$ and $5C$ respectively are placed at all the corners of a square. Which of the following statements is true for the point of intersection of the diagonals ?
Point charge ${q_1} = 2\,\mu C$ and ${q_2} = - 1\,\mu C$ are kept at points $x = 0$ and $x = 6$ respectively. Electrical potential will be zero at points
Write the relation between the electric field of an electric charge and electrostatic potential at any point.