The chord $ PQ $ of the rectangular hyperbola $xy = a^2$ meets the axis of $x$ at $A ; C $ is the mid point of $ PQ\ \& 'O' $ is the origin. Then the $ \Delta ACO$ is :
equilateral
isosceles
right angled
right isosceles.
If $PQ$ is a double ordinate of the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ such that $OPQ$ is an equilateral triangle, $O$ being the center of the hyperbola. then the $'e'$ eccentricity of the hyperbola, satisfies
The number of possible tangents which can be drawn to the curve $4x^2 - 9y^2 = 36$ , which are perpendicular to the straight line $5x + 2y -10 = 0$ is
Let $a$ and $b$ respectively be the semitransverse and semi-conjugate axes of a hyperbola whose eccentricity satisfies the equation $9e^2 - 18e + 5 = 0.$ If $S(5, 0)$ is a focus and $5x = 9$ is the corresponding directrix of this hyperbola, then $a^2 - b^2$ is equal to
The locus of the point of intersection of the lines $ax\sec \theta + by\tan \theta = a$ and $ax\tan \theta + by\sec \theta = b$, where $\theta $ is the parameter, is
The equation of the tangents to the hyperbola $3{x^2} - 4{y^2} = 12$ which cuts equal intercepts from the axes, are