Let the eccentricity of an ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ is reciprocal to that of the hyperbola $2 x^2-2 y^2=1$. If the ellipse intersects the hyperbola at right angles, then square of length of the latus-rectum of the ellipse is $................$.
$4$
$6$
$2$
$8$
The curve $xy = c, (c > 0)$, and the circle $x^2 + y^2 = 1$ touch at two points. Then the distance between the points of contacts is
Consider the hyperbola
$\frac{x^2}{100}-\frac{y^2}{64}=1$
with foci at $S$ and $S_1$, where $S$ lies on the positive $x$-axis. Let $P$ be a point on the hyperbola, in the first quadrant. Let $\angle SPS _1=\alpha$, with $\alpha<\frac{\pi}{2}$. The straight line passing through the point $S$ and having the same slope as that of the tangent at $P$ to the hyperbola, intersects the straight line $S_1 P$ at $P_1$. Let $\delta$ be the distance of $P$ from the straight line $SP _1$, and $\beta= S _1 P$. Then the greatest integer less than or equal to $\frac{\beta \delta}{9} \sin \frac{\alpha}{2}$ is. . . . . . .
For $0<\theta<\pi / 2$, if the eccentricity of the hyperbola $\mathrm{x}^2-\mathrm{y}^2 \operatorname{cosec}^2 \theta=5$ is $\sqrt{7}$ times eccentricity of the ellipse $x^2 \operatorname{cosec}^2 \theta+y^2=5$, then the value of $\theta$ is :
The equation of the common tangents to the two hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ are-
The locus of the foot of the perpendicular from the centre of the hyperbola $xy = c^2$ on a variable tangent is :