The circle $x^2+y^2-8 x=0$ and hyperbola $\frac{x^2}{9}-\frac{y^2}{4}=1$ intersect at the points $A$ and $B$
$2.$ Equation of a common tangent with positive slope to the circle as well as to the hyperbola is
$(A)$ $2 x-\sqrt{5} y-20=0$ $(B)$ $2 x-\sqrt{5} y+4=0$
$(C)$ $3 x-4 y+8=0$ $(D)$ $4 x-3 y+4=0$
$2.$ Equation of the circle with $\mathrm{AB}$ as its diameter is
$(A)$ $x^2+y^2-12 x+24=0$ $(B)$ $x^2+y^2+12 x+24=0$
$(C)$ $\mathrm{x}^2+\mathrm{y}^2+24 \mathrm{x}-12=0$ $(D)$ $x^2+y^2-24 x-12=0$
Give hte answer question $1, 2$
$(B,A)$
$(B,D)$
$(B,C)$
$(A,D)$
The differential equation $\frac{{dx}}{{dy}}= \frac{{3y}}{{2x}}$ represents a family of hyperbolas (except when it represents a pair of lines) with eccentricity :
Let $0 < \theta < \frac{\pi }{2}$. If the eccentricity of the hyperbola $\frac{{{x^2}}}{{{{\cos }^2}\,\theta }} - \frac{{{y^2}}}{{{{\sin }^2}\,\theta }} = 1$ is greater than $2$, then the length of its latus rectum lies in the interval
The eccentricity of curve ${x^2} - {y^2} = 1$ is
Let the latus rectum of the hyperbola $\frac{x^2}{9}-\frac{y^2}{b^2}=1$ subtend an angle of $\frac{\pi}{3}$ at the centre of the hyperbola. If $\mathrm{b}^2$ is equal to $\frac{l}{\mathrm{~m}}(1+\sqrt{\mathrm{n}})$, where $l$ and $\mathrm{m}$ are co-prime numbers, then $l^2+\mathrm{m}^2+\mathrm{n}^2$ is equal to______________.
Area of the quadrilateral formed with the foci of the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ and $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = - 1$ is