The locus of the midpoints of the chord of the circle, $x^{2}+y^{2}=25$ which is tangent to the hyperbola $, \frac{ x ^{2}}{9}-\frac{ y ^{2}}{16}=1$ is
$\left(x^{2}+y^{2}\right)^{2}-16 x^{2}+9 y^{2}=0$
$\left(x^{2}+y^{2}\right)^{2}-9 x^{2}+144 y^{2}=0$
$\left(x^{2}+y^{2}\right)^{2}-9 x^{2}-16 y^{2}=0$
$\left(x^{2}+y^{2}\right)^{2}-9 x^{2}+16 y^{2}=0$
Let $0 < \theta < \frac{\pi }{2}$. If the eccentricity of the hyperbola $\frac{{{x^2}}}{{{{\cos }^2}\,\theta }} - \frac{{{y^2}}}{{{{\sin }^2}\,\theta }} = 1$ is greater than $2$, then the length of its latus rectum lies in the interval
If $(4, 0)$ and $(-4, 0)$ be the vertices and $(6, 0)$ and $(-6, 0)$ be the foci of a hyperbola, then its eccentricity is
For hyperbola $\frac{{{x^2}}}{{{{\cos }^2}\alpha }} - \frac{{{y^2}}}{{{{\sin }^2}\alpha }} = 1$ which of the following remain constant if $\alpha$ varies
The eccentricity of a hyperbola passing through the points $(3, 0)$, $(3\sqrt 2 ,\;2)$ will be
Let $P (3\, sec\,\theta , 2\, tan\,\theta )$ and $Q\, (3\, sec\,\phi , 2\, tan\,\phi )$ where $\theta + \phi \, = \frac{\pi}{2}$ , be two distinct points on the hyperbola $\frac{{{x^2}}}{9} - \frac{{{y^2}}}{4} = 1$ . Then the ordinate of the point of intersection of the normals at $P$ and $Q$ is