The locus of the midpoints of the chord of the circle, $x^{2}+y^{2}=25$ which is tangent to the hyperbola $, \frac{ x ^{2}}{9}-\frac{ y ^{2}}{16}=1$ is

  • [JEE MAIN 2021]
  • A

    $\left(x^{2}+y^{2}\right)^{2}-16 x^{2}+9 y^{2}=0$

  • B

    $\left(x^{2}+y^{2}\right)^{2}-9 x^{2}+144 y^{2}=0$

  • C

    $\left(x^{2}+y^{2}\right)^{2}-9 x^{2}-16 y^{2}=0$

  • D

    $\left(x^{2}+y^{2}\right)^{2}-9 x^{2}+16 y^{2}=0$

Similar Questions

Let $e_{1}$ and $e_{2}$ be the eccentricities of the ellipse, $\frac{x^{2}}{25}+\frac{y^{2}}{b^{2}}=1(b<5)$ and the hyperbola $\frac{ x ^{2}}{16}-\frac{ y ^{2}}{ b ^{2}}=1$ respectively satisfying $e _{1} e _{2}=1 .$ If $\alpha$ and $\beta$ are the distances between the foci of the ellipse and the foci of the hyperbola respectively, then the ordered pair $(\alpha, \beta)$ is equal to

  • [JEE MAIN 2020]

If $ P(x_1, y_1), Q(x_2, y_2), R(x_3, y_3) $ and $ S(x_4, y_4) $ are $4 $ concyclic points on the rectangular hyperbola $x y = c^2$ , the co-ordinates of the orthocentre of the triangle $ PQR$  are :

Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola $\frac{y^{2}}{9}-\frac{x^{2}}{27}=1$

Let $a>0, b>0$. Let $e$ and $\ell$ respectively be the eccentricity and length of the latus rectum of the hyperbola $\frac{ x ^{2}}{ a ^{2}}-\frac{ y ^{2}}{ b ^{2}}=1$. Let $e ^{\prime}$ and $\ell^{\prime}$ respectively the eccentricity and length of the latus rectum of its conjugate hyperbola. If $e ^{2}=\frac{11}{14} \ell$ and $\left( e ^{\prime}\right)^{2}=\frac{11}{8} \ell^{\prime}$, then the value of $77 a+44 b$ is equal to

  • [JEE MAIN 2022]

Let $\mathrm{A}\,(\sec \theta, 2 \tan \theta)$ and $\mathrm{B}\,(\sec \phi, 2 \tan \phi)$, where $\theta+\phi=\pi / 2$, be two points on the hyperbola $2 \mathrm{x}^{2}-\mathrm{y}^{2}=2$. If $(\alpha, \beta)$ is the point of the intersection of the normals to the hyperbola at $\mathrm{A}$ and $\mathrm{B}$, then $(2 \beta)^{2}$ is equal to ..... .

  • [JEE MAIN 2021]