The co-axial system of circles given by ${x^2} + {y^2} + 2gx + c = 0$ for $c < 0$ represents

  • A

    Intersecting circles

  • B

    Non intersecting circles

  • C

    Touching circles

  • D

    Touching or non-intersecting circles

Similar Questions

If one of the diameters of the circle $x^{2}+y^{2}-2 x-6 y+6=0$ is a chord of another circle $'C'$, whose center is at $(2,1),$ then its radius is..........

  • [JEE MAIN 2021]

Answer the following by appropriately matching the lists based on the information given in the paragraph

Let the circles $C_1: x^2+y^2=9$ and $C_2:(x-3)^2+(y-4)^2=16$, intersect at the points $X$ and $Y$. Suppose that another circle $C_3:(x-h)^2+(y-k)^2=r^2$ satisfies the following conditions :

$(i)$ centre of $C _3$ is collinear with the centres of $C _1$ and $C _2$

$(ii)$ $C _1$ and $C _2$ both lie inside $C _3$, and

$(iii)$ $C _3$ touches $C _1$ at $M$ and $C _2$ at $N$.

Let the line through $X$ and $Y$ intersect $C _3$ at $Z$ and $W$, and let a common tangent of $C _1$ and $C _3$ be a tangent to the parabola $x^2=8 \alpha y$.

There are some expression given in the $List-I$ whose values are given in $List-II$ below:

$List-I$ $List-II$
$(I)$ $2 h + k$ $(P)$ $6$
$(II)$ $\frac{\text { Length of } ZW }{\text { Length of } XY }$ $(Q)$ $\sqrt{6}$
$(III)$ $\frac{\text { Area of triangle } MZN }{\text { Area of triangle ZMW }}$ $(R)$ $\frac{5}{4}$
$(IV)$ $\alpha$ $(S)$ $\frac{21}{5}$
  $(T)$ $2 \sqrt{6}$
  $(U)$ $\frac{10}{3}$

($1$) Which of the following is the only INCORRECT combination?

$(1) (IV), (S)$ $(2) (IV), (U)$ $(3) (III), (R)$ $(4) (I), (P)$

($2$) Which of the following is the only CORRECT combination?

$(1) (II), (T)$ $(2) (I), (S)$ $(3) (I), (U)$ $(4) (II), (Q)$

Give the answer or quetion ($1$) and ($2$)

  • [IIT 2019]

The equation of the image of the circle ${x^2} + {y^2} + 16x - 24y + 183 = 0$ by the line mirror $4x + 7y + 13 = 0$ is

Circles ${x^2} + {y^2} + 2gx + 2fy = 0$ and ${x^2} + {y^2}$ $ + 2g'x + 2f'y = $ $0$ touch externally, if

If the centre of a circle which passing through the points of intersection of the circles ${x^2} + {y^2} - 6x + 2y + 4 = 0$and ${x^2} + {y^2} + 2x - 4y - 6 = 0$ is on the line $y = x$, then the equation of the circle is