The coefficient of $x^2$ in the expansion of the product $(2 -x^2)$. $((1 + 2x + 3x^2)^6 +(1 -4x^2)^6)$ is
$106$
$107$
$155$
$108$
Middle term in the expansion of ${(1 + 3x + 3{x^2} + {x^3})^6}$ is
If the coefficients of $x^{-2}$ and $x^{-4}$ in the expansion of ${\left( {{x^{\frac{1}{3}}} + \frac{1}{{2{x^{\frac{1}{3}}}}}} \right)^{18}}\,,\,\left( {x > 0} \right),$ are $m$ and $n$ respectively, then $\frac{m}{n}$ is equal to
The coefficient of the middle term in the binomial expansion in powers of $x$ of ${(1 + \alpha x)^4}$ and of ${(1 - \alpha x)^6}$ is the same if $\alpha $ equals
The coefficients of three consecutive terms in the expansion of $(1+a)^{n}$ are in the ratio $1: 7: 42 .$ Find $n$
Let $\alpha > 0$, be the smallest number such that the expansion of $\left(x^{\frac{2}{3}}+\frac{2}{x^3}\right)^{30}$ has a term $\beta x^{-\alpha}, \beta \in N$. Then $\alpha$ is equal to $.............$.