The number of rational terms in the binomial expansion of $\left(4^{\frac{1}{4}}+5^{\frac{1}{6}}\right)^{120}$ is $....$
$120$
$21$
$41$
$61$
The coefficient of ${x^5}$ in the expansion of ${(x + 3)^6}$ is
If $a^3 + b^6 = 2$, then the maximum value of the term independent of $x$ in the expansion of $(ax^{\frac{1}{3}}+bx^{\frac{-1}{6}})^9$ is, where $(a > 0, b > 0)$
If the number of integral terms in the expansion of $\left(3^{\frac{1}{2}}+5^{\frac{1}{8}}\right)^{\text {n }}$ is exactly $33,$ then the least value of $n$ is
If $\left(\frac{3^{6}}{4^{4}}\right) \mathrm{k}$ is the term, independent of $\mathrm{x}$, in the binomial expansion of $\left(\frac{\mathrm{x}}{4}-\frac{12}{\mathrm{x}^{2}}\right)^{12}$, then $\mathrm{k}$ is equal to ...... .
The coefficient of $x^{1012}$ in the expansion of ${\left( {1 + {x^n} + {x^{253}}} \right)^{10}}$ , (where $n \leq 22$ is any positive integer), is