The coefficient of $x ^{101}$ in the expression $(5+x)^{500}+x(5+x)^{499}+x^{2}(5+x)^{498}+\ldots . x^{500}$ $x>0$, is
${ }^{501} C _{101}(5)^{399}$
${ }^{501} C _{101}(5)^{400}$
${ }^{501} C _{100}(5)^{400}$
${ }^{500} C _{101}(5)^{399}$
The number of terms in the expansion of $(1 +x)^{101} (1 +x^2 - x)^{100}$ in powers of $x$ is
Let $(1+2 x)^{20}=a_0+a_1 x+a_2 x^2+\ldots+a_{20} x^{20}$.Then $3 a_0+2 a_1+3 a_2+2 a_3+3 a_4+2 a_5+\ldots+2 a_{19}+3 a_{20}$ equals
Let n and k be positive integers such that $n \ge \frac{{k(k + 1)}}{2}$. The number of solutions $({x_1},{x_2},....{x_k})$, ${x_1} \ge 1,{x_2} \ge 2,....{x_k} \ge k,$ all integers, satisfying ${x_1} + {x_2} + .... + {x_k} = n$, is
The sum of coefficients in ${(1 + x - 3{x^2})^{2134}}$ is
In the expansion of
$(2x + 1).(2x + 5) . (2x + 9) . (2x + 13)...(2x + 49),$ find the coefficient of $x^{12}$ is :-