7.Binomial Theorem
hard

 અભિવ્યક્તિ $(5+x)^{500}+x(5+x)^{499}+x^{2}(5+x)^{498}+\ldots . x^{500}$ $x>0$ માં  $x ^{101}$ નો સહુગુણક ......... છે.

A

${ }^{501} C _{101}(5)^{399}$

B

${ }^{501} C _{101}(5)^{400}$

C

${ }^{501} C _{100}(5)^{400}$

D

${ }^{500} C _{101}(5)^{399}$

(JEE MAIN-2022)

Solution

$(5+x)^{500}+x(5+x)^{499}+x^{2}(5+x)^{498}+\ldots+x^{500}$

$=\frac{(5+x)^{501}-x^{501}}{(5+x)-x}=\frac{(5+x)^{501}-x^{501}}{5}$

$\Rightarrow$ coefficient $x ^{101}$ in given expression

$=\frac{{ }^{501} C _{101} 5^{400}}{5}={ }^{501} C _{101} 5^{399}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.