$(1+x)\left(1+x^2\right)\left(1+x^3\right) \ldots\left(1+x^{100}\right)$ के विस्तार में $x^9$ के गुणांक का मान है
$6$
$7$
$8$
$9$
यदि $(1+a)^{n}$ के प्रसार में तीन क्रमागत पदों के गुणांक $1: 7: 42$ के अनुपात में हैं तो $n$ का मान ज्ञात कीजिए।
यदि $\left(\sqrt{\frac{1}{x^{1+\log _{10} x}}}+x^{\frac{1}{12}}\right)^{6}$ के द्विपद प्रसार का चौथा पद $200$ है तथा $x>1$ है, तो $x$ का मान है
$\left(1-\frac{1}{x}+3 x^{5}\right)\left(2 x^{2}-\frac{1}{x}\right)^{8}$ के द्विपद प्रसार में $x$ से स्वतंत्र पद है
$\left(\sqrt[3]{x}+\frac{1}{2 \sqrt[3]{x}}\right)^{18}, x>0$ के प्रसार में $x$ से स्वतंत्र पद ज्ञात कीजिए।
$\sum\limits_{j = 0}^{200} {{{(1 + x)}^j}} $ के विस्तार में ${x^{100}}$ का गुणांक है