The coefficient of ${x^{32}}$ in the expansion of ${\left( {{x^4} - \frac{1}{{{x^3}}}} \right)^{15}}$ is
$^{15}{C_4}$
$^{15}{C_3}$
$^{15}{C_2}$
$^{15}{C_5}$
If $a$ and $b$ are distinct integers, prove that $a-b$ is a factor of $a^{n}-b^{n}$, whenever $n$ is a positive integer.
Find $a$ if the $17^{\text {th }}$ and $18^{\text {th }}$ terms of the expansion ${(2 + a)^{{\rm{50 }}}}$ are equal.
The coefficient of $x^{-5}$ in the binomial expansion of ${\left( {\frac{{x + 1}}{{{x^{\frac{2}{3}}} - {x^{\frac{1}{3}}} + 1}} - \frac{{x - 1}}{{x - {x^{\frac{1}{2}}}}}} \right)^{10}}$ where $x \ne 0, 1$ , is
If the ${(r + 1)^{th}}$ term in the expansion of ${\left( {\sqrt[3]{{\frac{a}{{\sqrt b }}}} + \sqrt {\frac{b}{{\sqrt[3]{a}}}} } \right)^{21}}$ has the same power of $a$ and $b$, then the value of $r$ is
Show that the middle term in the expansion of $(1+x)^{2 n}$ is
$\frac{1.3 .5 \ldots(2 n-1)}{n !} 2 n\, x^{n},$ where $n$ is a positive integer.