7.Binomial Theorem
easy

${\left( {{x^4} - \frac{1}{{{x^3}}}} \right)^{15}}$ के विस्तार में ${x^{32}}$ का गुणांक होगा

A

$^{15}{C_4}$

B

$^{15}{C_3}$

C

$^{15}{C_2}$

D

$^{15}{C_5}$

Solution

${T_{r + 1}} = {}^{15}{C_r}{({x^4})^{15 – r}}{\left( {\frac{{ – 1}}{{{x^3}}}} \right)^r}$

 $\therefore {T_{r + 1}} = {}^{15}{C_r}\frac{{{{(x)}^{60 – 4r}}{{( – 1)}^r}}}{{{{(x)}^{3r}}}}$$ = {}^{15}{C_r}{( – 1)^r}{(x)^{60 – 7r}}$

अब $60 – 7r = 32$ रखने पर

==>$60 – 32 = 7r$  

==> $r = \frac{{28}}{7} = 4$

$\therefore $ ${r^{32}}$ का गुणांक$ = {}^{15}{C_4}{( – 1)^4} = {}^{15}{C_4}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.