7.Binomial Theorem
easy

${\left( {{x^4} - \frac{1}{{{x^3}}}} \right)^{15}}$ ના વિસ્તરણમાં ${x^{32}}$ નો સહગુણક મેળવો.

A

$^{15}{C_4}$

B

$^{15}{C_3}$

C

$^{15}{C_2}$

D

$^{15}{C_5}$

Solution

(a) ${T_{r + 1}} = {}^{15}{C_r}{({x^4})^{15 – r}}{\left( {\frac{{ – 1}}{{{x^3}}}} \right)^r}$

$\therefore {T_{r + 1}} = {}^{15}{C_r}\frac{{{{(x)}^{60 – 4r}}{{( – 1)}^r}}}{{{{(x)}^{3r}}}}$

$ = {}^{15}{C_r}{( – 1)^r}{(x)^{60 – 7r}}$

Now putting $60 – 7r = 32$

==> $60 – 32 = 7r$

==> $r = \frac{{28}}{7} = 4$

$\therefore $ Coefficient of ${r^{32}} = {}^{15}{C_4}{( – 1)^4} = {}^{15}{C_4}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.