If $(1 + x - 3x^2)^{2145} = a_0 + a_1x + a_2x^2 + .........$ then $a_0 - a_1 + a_2 - a_3 + ..... $ ends with
$1$
$3$
$7$
$9$
What is the coefficient of $x^{100}$ in $(1 + x + x^2 + x^3 +.... + x^{100})^3$ ?
If ${C_0},{C_1},{C_2},.......,{C_n}$ are the binomial coefficients, then $2.{C_1} + {2^3}.{C_3} + {2^5}.{C_5} + ....$ equals
A possible value of $^{\prime}x^{\prime}$, for which the ninth term in the expansion of $\left\{3^{\log _{3} \sqrt{25^{x-1}+7}}+3^{\left(-\frac{1}{8}\right) \log _{3}\left(5^{x-1}+1\right)}\right\}^{10}$ in the increasing powers of $3^{\left(-\frac{1}{8}\right) \log _{3}\left(5^{x-1}+1\right)}$ is equal to $180$ , is:
The value $\sum \limits_{ r =0}^{22}{ }^{22} C _{ r }{ }^{23} C _{ r }$ is $.......$
If $1+\left(2+{ }^{49} C _{1}+{ }^{49} C _{2}+\ldots .+{ }^{49} C _{49}\right)\left({ }^{50} C _{2}+{ }^{50} C _{4}+\right.$ $\ldots . .+{ }^{50} C _{ so }$ ) is equal to $2^{ n } . m$, where $m$ is odd, then $n$ $+m$ is equal to.