The coefficient of $x^r (0 \le r \le n - 1)$ in the expression :
$(x + 2)^{n-1} + (x + 2)^{n-2}. (x + 1) + (x + 2)^{n-3} . (x + 1)^2; + ...... + (x + 1)^{n-1}$ is :
$^nC_r (2^r - 1)$
$^nC_r (2^{n-r} - 1)$
$^nC_r (2^r + 1)$
$^nC_r (2^{n-r} + 1)$
The coefficient of $x^9$ in the polynomial given by $\sum\limits_{r - 1}^{11} {(x + r)\,(x + r + 1)\,(x + r + 2)...\,(x + r + 9)}$ is
The value of ${\sum\limits_{r = 1}^{19} {\frac{{{}^{20}{C_{r + 1}}\left( { - 1} \right)}}{{{2^{2r + 1}}}}} ^r}$ is
If $n$ is an integer greater than $1$, then $a{ - ^n}{C_1}(a - 1){ + ^n}{C_2}(a - 2) + .... + {( - 1)^n}(a - n) = $
Coefficient of $x^{19}$ in the polynomial $(x-1) (x-2^1) (x-2^2) .... (x-2^{19})$ is
If number of terms in the expansion of ${(x - 2y + 3z)^n}$ are $45$, then $n=$