7.Binomial Theorem
normal

The coefficient of $x^r (0 \le r \le n - 1)$ in the expression :

$(x + 2)^{n-1} + (x + 2)^{n-2}. (x + 1) + (x + 2)^{n-3} . (x + 1)^2; + ...... + (x + 1)^{n-1}$ is :

A

$^nC_r (2^r - 1)$

B

$^nC_r (2^{n-r} - 1)$

C

$^nC_r (2^r + 1)$

D

$^nC_r (2^{n-r} + 1)$

Solution

$E = (x + 2)^{n – 1}$ $\left[ {\,1\,\, + \,\,\frac{{x\,\, + \,\,1}}{{x\,\, + \,\,2}}\,\, + \,\,{{\left( {\frac{{x\,\, + \,\,1}}{{x\,\, + \,\,2}}} \right)}^2}\,\, + \,\,……\,\, + \,\,{{\left( {\frac{{x\,\, + \,\,1}}{{x\,\, + \,\,2}}} \right)}^{n\, – \,1}}\,} \right]$

$= (x + 2)^{n – 1}$ $\left[ {\frac{{1\,\, – \,\,{{\left( {{\textstyle{{x\,\, + \,\,1} \over {x\,\, + \,\,2}}}} \right)}^n}}}{{1\,\, – \,\,{\textstyle{{x\,\, + \,\,1} \over {x\,\, + \,\,2}}}}}} \right]$ 

$= (x + 2)^n$ $\left[ {\frac{{{{(x\,\, + \,\,2)}^n}\,\, – \,\,{{(x\,\, + \,\,1)}^n}}}{{{{(x\,\, + \,\,2)}^n}}}} \right]$ 

$= (x + 2)^n – (x + 1)^n$

Now co-efficient of $x^r$ in $\left[ {\,{{(2\,\, + \,\,x)}^n}\,\, – \,\,{{(1\,\, + \,\,x)}^n}\,} \right] = ^nC_r 2^{n – r} – ^nC_r = ^nC_r (2^{n – r} – 1)$ 

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.