If ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + ... + {C_n}{x^n}$, then the value of ${C_0} + {C_2} + {C_4} + {C_6} + .....$ is
${2^{n - 1}}$
${2^{n - 1}}$
${2^n}$
${2^{n - 1}} - 1$
The number of terms in the expansion of $(1 +x)^{101} (1 +x^2 - x)^{100}$ in powers of $x$ is
If $a_r$ is the coefficient of $x^{10-r}$ in the Binomial expansion of $(1+x)^{10}$, then $\sum \limits_{r=1}^{10} r^3\left(\frac{a_r}{a_{r-1}}\right)^2$ is equal to
If ${(1 + x)^{15}} = {C_0} + {C_1}x + {C_2}{x^2} + ...... + {C_{15}}{x^{15}},$ then ${C_2} + 2{C_3} + 3{C_4} + .... + 14{C_{15}} = $
$\left( {\left( {\begin{array}{*{20}{c}}
{21}\\
1
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
1
\end{array}} \right)} \right) + \left( {\left( {\begin{array}{*{20}{c}}
{21}\\
2
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
2
\end{array}} \right)} \right)$$ + \left( {\left( {\begin{array}{*{20}{c}}
{21}\\
3
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
3
\end{array}} \right)} \right) + \;.\;.\;.$$ + \left( {\left( {\begin{array}{*{20}{c}}
{21}\\
{10}
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
{10}
\end{array}} \right)} \right) = $
The sum, of the coefficients of the first $50$ terms in the binomial expansion of $(1-x)^{100}$, is equal to