7.Binomial Theorem
easy

If ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + ... + {C_n}{x^n}$, then the value of ${C_0} + {C_2} + {C_4} + {C_6} + .....$ is

A

${2^{n - 1}}$

B

${2^{n - 1}}$

C

${2^n}$

D

${2^{n - 1}} - 1$

Solution

(a) ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + …. + {C_n}{x^n}$

Putting $x = 1$, we get

$ \Rightarrow {2^n} = {C_0} + {C_1} + {C_2} + ….. + {C_n}$…..(i)

or ${C_1} + {C_2} + {C_3} + …. + {C_n} = {2^n} – 1$      $[\,{C_0} = {\,^n}{C_0} = 1]$

Again, putting $x = -1$, we get

$0 = {C_0} – {C_1} + {C_2} – {C_3} + ….$

or ${C_0} + {C_2} + {C_4} + ….$$ = {C_1} + {C_3} + {C_5} + ….$ $ i.e. A = B$

Also from  $(i), A + B =2^n$ or $A = {2^{n – 1}} = B$

Hence, ${C_0} + {C_2} + {C_4} + …. = {2^{n – 1}}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.