4-1.Complex numbers
medium

The complex numbers $\sin x + i\cos 2x$ and $\cos x - i\sin 2x$ are conjugate to each other for

A

$x = n\pi $

B

$x = \left( {n + \frac{1}{2}} \right)\pi $

C

$x = 0$

D

No value of $x$

(IIT-1988)

Solution

(d) $\sin x + i\cos 2x$and $\cos x – i\sin 2x$are conjugate to each other if $sin x=cos x$ and $\cos 2x = \sin 2x$
or $\tan x = 1$==> $x = \frac{\pi }{4},\frac{{5\pi }}{4},\frac{{9\pi }}{4},……$ $(i)$
and $\tan 2x = 1$==> $2x = \frac{\pi }{4},\frac{{5\pi }}{4},\frac{{9\pi }}{4},……..$
or $x = \frac{\pi }{8},\frac{{5\pi }}{8},\frac{{9\pi }}{8}$……. $(ii)$
There exists no value of $x$common in $(i) $ and $ (ii)$. Therefore there is no value of $x$ for which the given complex numbers are conjugate.
 

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.