Let
$A=\left\{(x, y) \in R \times R \mid 2 x^{2}+2 y^{2}-2 x-2 y=1\right\}$
$B=\left\{(x, y) \in R \times R \mid 4 x^{2}+4 y^{2}-16 y+7=0\right\} \text { and }$
$C=\left\{(x, y) \in R \times R \mid x^{2}+y^{2}-4 x-2 y+5 \leq r^{2}\right\}$
Then the minimum value of $|r|$ such that $A \cup B \subseteq C$ is equal to:
If $P$ and $Q$ are the points of intersection of the circles ${x^2} + {y^2} + 3x + 7y + 2p - 5 = 0$ and ${x^2} + {y^2} + 2x + 2y - {p^2} = 0$ then there is a circle passing through $P, Q$ and $(1, 1)$ for:
The equation of the circle having the lines ${x^2} + 2xy + 3x + 6y = 0$ as its normals and having size just sufficient to contain the circle $x(x - 4) + y(y - 3) = 0$is
The radical axis of two circles and the line joining their centres are
$P$ is a point $(a, b)$ in the first quadrant. If the two circles which pass through $P$ and touch both the co-ordinate axes cut at right angles, then :