The coordinates of the radical centre of the three circles ${x^2} + {y^2} - 4x - 2y + 6 = 0,{x^2} + {y^2} - 4x - 2y + 6 = 0,$${x^2} + {y^2} - 12x + 2y + 30 = 0$ are
$(6, 30)$
$(0, 6)$
$(3, 0)$
None of these
If a circle passes through the point $(a , b) \&$ cuts the circle $x^2 + y^2= K^2$ orthogonally, then the equation of the locus of its centre is :
Two tangents are drawn from a point $P$ on radical axis to the two circles touching at $Q$ and $R$ respectively then triangle formed by joining $PQR$ is
If one common tangent of the two circles $x^2 + y^2 = 4$ and ${x^2} + {\left( {y - 3} \right)^2} = \lambda ,\lambda > 0$ passes through the point $\left( {\sqrt 3 ,1} \right)$, then possible value of $\lambda$ is
The locus of centre of a circle passing through $(a, b)$ and cuts orthogonally to circle ${x^2} + {y^2} = {p^2}$, is
Let $Z$ be the set of all integers,
$\mathrm{A}=\left\{(\mathrm{x}, \mathrm{y}) \in \mathbb{Z} \times \mathbb{Z}:(\mathrm{x}-2)^{2}+\mathrm{y}^{2} \leq 4\right\}$
$\mathrm{B}=\left\{(\mathrm{x}, \mathrm{y}) \in \mathbb{Z} \times \mathbb{Z}: \mathrm{x}^{2}+\mathrm{y}^{2} \leq 4\right\} \text { and }$
$\mathrm{C}=\left\{(\mathrm{x}, \mathrm{y}) \in \mathbb{Z} \times \mathbb{Z}:(\mathrm{x}-2)^{2}+(\mathrm{y}-2)^{2} \leq 4\right\}$
If the total number of relation from $\mathrm{A} \cap \mathrm{B}$ to $\mathrm{A} \cap \mathrm{C}$ is $2^{\mathrm{p}}$, then the value of $\mathrm{p}$ is :