- Home
- Standard 11
- Mathematics
10-1.Circle and System of Circles
normal
Suppose $S_1$ and $S_2$ are two unequal circles, $A B$ and $C D$ are the direct common tangents to these circles. A transverse common tangent $P Q$ cuts $A B$ in $R$ and $C D$ in $S$. If $A B=10$, then $R S$ is

A
$8$
B
$9$
C
$10$
D
$11$
(KVPY-2014)
Solution
(c)
Given,
$A B$ and $C D$ are direct common tangents on circle $P Q$ is transverse common tangent $P Q$ cuts $A B$ in $R$ and $C D$ in $S$.
$A B=10$
$R P=R A$
$[\because$ tangents from external point on a circle are equal]
Similarly
$R Q=R B$
$S P=S C$
$R S=S P+P Q+R Q$
$R S=S P+R P$
$R S=S P+R A$
$R S=S P+A B-R B \quad \ldots( i )$
$S Q=S D$
$R S-Q R =C D-C S$
$R S =Q R+C D-C S$
$R S =R B+A B-S P \ldots \text { (ii) }$
From Eqs.$(i)$ and $(ii)$, we get
$S P=R B$
$R S=S P+A B-R B$
$R S=A B=10$
Standard 11
Mathematics