Let $C_1$ and $C_2$ be the centres of the circles $x^2 + y^2 -2x -2y -2 = 0$ and $x^2 + y^2 - 6x-6y + 14 = 0$ respectively. If $P$ and $Q$ are the points of intersection of these circles, then the area (in sq. units) of the quadrilateral $PC_1QC_2$ is ............. $\mathrm{sq. \, units}$
$8$
$6$
$9$
$4$
The equation of the circle passing through the point $(-2, 4)$ and through the points of intersection of the circle ${x^2} + {y^2} - 2x - 6y + 6 = 0$ and the line $3x + 2y - 5 = 0$, is
Let $r_{1}$ and $r_{2}$ be the radii of the largest and smallest circles, respectively, which pass through the point $(-4,1)$ and having their centres on the circumference of the circle $x^{2}+y^{2}+2 x+4 y-4= 0.$ If $\frac{r_{1}}{r_{2}}=a+b \sqrt{2}$, then $a+b$ is equal to:
Equation of radical axis of the circles ${x^2} + {y^2} - 3x - 4y + 5 = 0$, $2{x^2} + 2{y^2} - 10x$$ - 12y + 12 = 0$ is
The point of contact of the given circles ${x^2} + {y^2} - 6x - 6y + 10 = 0$ and ${x^2} + {y^2} = 2$, is
The number of common tangents of the circles given by $x^2 +y^2 - 8x - 2y + 1 = 0$ and $x^2 + y^2 + 6x + 8y = 0$ is